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Abstract

In this investigation the _eld equations governing the mechanical behavior of a ~uid!saturated porous
media are analyzed and built up for the study of elastic dynamical problems and quasi!static problems in
case of elasticÐplastic material behavior[ The investigations are limited to small deformation in order to
apply a geometrical linear approach[ The two constituents are assumed to be microscopically incompressible[
A numerical solution is derived by means of the standard Galerkin procedure and the _nite element method[
Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Porous media are present in many _elds of engineering science[ For example soil consists of a
portion of space occupied partly by a solid phase "solid skeleton# and partly by a void space _lled
with ~uid[ A further application of porous media are metal powders\ which consist of grains as
solid phase and gas in the void space[ These metal powders are used in compaction processes in
mechanical engineering[ The mechanical behavior of a saturated porous medium is governed
mainly by the interaction of the solid phase with the ~uid phase[ This interaction occurs in quasi!
static problems\ but is particularly strong in dynamic problems[

The equations governing the interaction of the solid and ~uid media were _rst established for
dynamic problems by Fillunger "0825#[ Another approach for dynamic problems was formulated
by Biot "0844#\ who did not proceed from the basic equations of mechanics\ but introduced quite
a good model in an intuitive way[ At a later stage Truesdell "0846# introduced\ guided by the ideas
of Stefan "0760#\ the mixture theory[ Morland "0861# extended this theory and in time this concept
"mixture theory\ restricted by the volume friction concept\ known in the literature as porous media
theory# has been successfully developed by Bowen "0879#\ Mow et al[ "0879#\ de Boer and Kowalski
"0872#\ Ehlers "0878# and Bluhm "0886#[ A survey of the historical development of the porous
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media theory and a discussion of inconsistencies implicit in the mixture theory has recently been
given by de Boer "0885#[ His work ends with an introduction of the model developed by de Boer
"0885# and Bluhm "0886#\ which is the basis for the calculation shown in this paper[

Most of the problems of the two phase behavior of a ~uid!saturated porous medium can
only be predicted quantitatively by elaborate numerical computation\ which fortunately today is
possible due to the development of powerful computers[ Only a few analytical solutions are
available\ which are used here to verify the numerical results based on the same theory[ For
practical work with arbitrary boundary conditions we must use the _nite element method[

In this investigation we start with the basic equations of the porous media theory and build
them up for the numerical calculation[ In particular the solutions for a one! and two!dimensional
consolidation problem and the wave propagation in a two phase porous media with incompressible
constituents will be shown\ as well as a compaction process of a metal powder[

In order to simplify the problem\ thermal e}ects and exchanges of mass as well as moment of
momentum supply between the constituents are excluded[

1[ Governing equations

1[0[ Concept of volume fractions and kinematics

The volume fractions na are de_ned as the local ratios of the constituent volume elements dva

with respect to the bulk volume element dv of the mixture "a � 0\ [ [ [ \ k\ where k is the number of
constituents#

na �
dva

dv
[ "0#

As a consequence of "0#\ we can calculate the partial volumes of each constituent by weighting the
bulk volume with the volume fractions

va � gBS

na dv[ "1#

With the aid of this assumption we obtained from the following identities

v � gBS

dv � s
k

a�0

va � gBS

s
k

a�0

dva � gBS

s
k

a�0

na dv\ "2#

the volume fraction condition

s
k

a�0

na � 0[ "3#

The volume fraction condition "3# plays an important role as a constraint in the constitutive theory
of porous saturated media\ see Nunziato and Passman "0870# or Bluhm and de Boer "0886#[

Each of the constituents 8a has a real density 7aR\ which is de_ned as the mass of 8a per unit of
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Fig[ 0[ Real structure and smeared model[

va[ With the aid of the volume fraction concept these properties can be {smeared| over the control
space\ see Fig[ 0 and we have the partial density

7a � na7aR[ "4#

In Fig[ 0 the real structure of a porous medium is shown on the left side and the smeared model
on the right side[

In the sequence the investigations are restricted to a binary model[ Considering the kinematics
of the ~uid!saturated porous medium\ which is an immiscible mixture of the constituents 8a with
particles Xa "a � S] solid phase\ a � F] ~uid phase#\ it is assumed that at any time t each spatial
point x is simultaneously occupied by the particles XS and XF[ These particles Xa proceed from
di}erent reference positions Xa at time t � t9[ Thus\ each constituent is assigned its own motion
function xa[ The volumetric strain of each constituent\ however\ is restricted by the constraint "3#[
The velocity x?S of the skeleton\ its acceleration xýS and deformation gradient FS at an arbitrary
point XS $ BS

9 and an arbitrary instant of time t are described by

x � xS"XS\ t#\ x?S � x?S"XS\ t#\ xýS � xýS"XS\ t#\ FS � GradS xS\ "5#

where x denotes the current position of the point XS and GradS means the derivative with respect
to XS[

The motion of the ~uid is given in the Eulerian way by the velocity _eld x?F on the con_guration
space of point x and its acceleration xýF is described by

x?F � x?F"x\ t#\ xýF � xýF"x\ t#[ "6#

Moreover\ the Green strain tensor ES is introduced

ES � 0
1
"FT

SFS−I#\ "7#

which can be expressed by the solid displacements uS[ In the linearized form

ES � 0
1
"GradS uS¦GradT

S uS# "8#

is obtained[
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1[1[ Field equations

The mechanical behavior of a ~uid!saturated porous solid is described in the porous media
theory by the balance equation of mass for each individual constituent

"7a#?a¦7a div x?a � 9\ "09#

the balance equation of momentum

div Ta¦7a"b−xýa#¦p¼a � 9 "00#

and the volume fraction condition that changes for a binary mixture into the saturation condition

nS¦nF � 0[ "01#

In these equations Ta is the partial Cauchy stress tensor\ b the external acceleration and p¼a the
interaction force between the constituents[ In addition\ {div| is the divergence operator and the
symbol "[[[#?a de_nes the material time derivative with respect to the trajectory of 8a[

As the sum of the interaction forces must vanish\ we obtain for a binary mixture

p¼F¦p¼S � 9[ "02#

The balance equation of moment of momentum leads\ excluding any moment of momentum
supply\ to symmetric stress tensors

Ta � TaT[ "03#

Since both constituents are incompressible\ we have]

7aR � constant[ "04#

With this assumption\ the volume fractions can be calculated from the balance equations of mass
"09# and with the aid of the deformation gradient\ one obtains

na � na9"det Fa#−0\ "05#

where na9 describes the initial porosity of 8a[

1[2[ Constitutive relations

In the above mentioned _eld equations the number of unknown variables is greater than the
number of equations\ thus\ we have to close the problem with constitutive equations for the partial
stress tensors Ta and the interaction force p¼F[

The constitutive relations for the solid and ~uid stress tensors Ta and for the interaction force
p¼F consist of two terms\

Ta � −napI¦Ta
E\ "06#

p¼F � p grad nF¦p¼F
E\ "07#

where the former\ as a result of the saturation condition\ is proportional to the pore pressure p\
while the latter represents the extra quantities\ index "[[[#E\ determined by the deformations[
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In particular the viscosity of the ~uid in~uences the interaction force p¼a\ but with regard to the
partial e}ective stress tensor of the ~uid it can be neglected]

TF
E ¼ 9[ "08#

In this investigation the applications are restricted to the geometrically linear theory\ thus\ the
partial e}ective Cauchy stress tensor TS

E of the solid and the second Piola Kirchho} stress tensor
SS

E approximately coincide

TS
E ¼ SS

E[ "19#

In the following the constitutive equations in the elastic\ plastic and elasticÐplastic states as well
as the interaction supply will be developed[

"a# Elastic state

Within the framework of the geometrically linear theory TS
E can be expressed by Hooke|s law]

TS
E � B

3

SeESe\ "10#

for elastic material behavior ESe � ES and for elasticÐplastic behavior ESe is the elastic part of the
solid strain\ as introduced in "21#[ The fourth!order tensor

B
3

Se � 1mSI
3

¦lSIÞ
3

"11#

is the constitutive tensor of elastic behavior[ The response parameters lS\ mS are the Lame� constants
of the solid skeleton[ The fourth!order tensors I

3

and IÞ
3

are identity tensors\ as described in de Boer
"0871#[

"b# Plastic state

The plastic material behavior\ as used in Section 4 of this paper\ is governed by the yield function

F � IITS
D

E
¦0

1
a1I1

TS
E
−0

1
k1 � 9\ "12#

see Green "0861# or de Boer and Kowalski "0872#\ where IITS
D

E
is the second invariant of the

deviatoric part of TS
E and ITS

E
is the _rst invariant of TS

E[ The geometrical interpretation of the
parameters a and k can be read in Bluhm et al[ "0885#[ The quantities a and k are assumed to
depend on the plastic work Wp[ From "12# we obtain the condition of consistency

DF �
1F

1TS
E

= DTS
E¦

1F
1a

Da¦
1F
1k

Dk � 9\ "13#

where

Da �
1a

1Wp

DWp �
1a

1Wp

TS
E = DESp "14#

and

Dk �
1k

1Wf

DWp �
1k

1Wf

TS
E = DESp[ "15#
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D represents the material time derivative with respect to the solid body[ The loading criteria for
hardening material can be derived from the consistency condition\ see de Boer and Ehlers "0879#\
as

F � 9 and
1F

1TS
E

= DTS
E 8

×9 loading DESp � 9\

�9 neutral state DESp � 9\

³9 unloading DESp � 9

"16#

and for ideal plastic material behavior as

F � 9 and
1F

1TS
E

= DTS
E 6

�9 neutral state DESp � 9\

³9 unloading DESp � 9[
"17#

In order to describe the complete motion of an initial! and boundary!value problem the associ!
ated ~ow rule

DESp � Dl
1F

1TS
E

\ "18#

with

Dl �

1F

1TS
E

= B
3

SeDES

1F

1TS
E

= B
3

Se

1F

1TS
E

¦h
\ "29#

where

h � −0
1F
1a

1a

1Wp

¦
1F
1k

1k

1Wp1TS
E =

1F

1TS
E

"20#

is used[ For ideal plastic material behavior\ as applied in Section 4\ the hardening parameter h
disappears[ The rate DESp is the plastic component of the strain increment and Dl the plastic
multiplier[

"c# StrainÐstress relation for plastic material behavior

In order to develop the stressÐstrain relation for elasticÐplastic deformations we commence from
the additive decomposition of the rate of the total strain DES

DES � DESe¦DESp[ "21#

The elastic component of the strain increment can be described by Hooke|s law "10# and "11#

DESe � B
3

−0
Se DTS

E[ "22#

Using well!known manipulations in plasticity\ see de Boer and Ehlers "0879#\ we obtain
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DES � 0B
3

−0
Se ¦

0
h

1F

1TS
E

&
1F

1TS
E1DTS

E[ "23#

As shown in de Boer and Ehlers "0879# the relation "23# can be inverted and one obtains]

DTS
E � B

3

SpDES\ "24#

where

B
3

Sp � B
3

Se−

B
3

Se

1F

1TS
E

& B
3

Se

1F

1TS
E

h¦
1F

1TS
E

= 0B
3

Se

1F

1TS
E1

[ "25#

The derivative is represented by

1F

1TS
E

� � TSD

E ¦a1"TS
E = I#I\ "26#

see de Boer and Kowalski "0872#[

"d# Interaction

The interaction between the ~uid and solid constituents\ caused by the motions\ can be described
by the extra supply term of momentum

p¼F
E � −

"nF#1gFR

kF
wF\ "27#

with wF � "x?F−x?S# being the seepage velocity\ gFR the real speci_c weight of the ~uid and kF the
Darcy permeability parameter[

1[3[ Modi_cation of variables

As mentioned above the control space of our porous medium is shaped by the solid skeleton[
Thus\ not the absolute motion of the ~uid is of interest\ but the motion relative to the solid
skeleton[ Let us introduce in place of the absolute velocity x?F of the ~uid the seepage velocity wF\
which is the ~uid velocity relative to the motion of the solid\ as mentioned above[

This quantity occurs in a natural way in the extra supply term of momentum\ see "27#[ In the
other equations the absolute velocity of the ~uid has to be replaced by]

x?F � wF¦x?S[ "28#

This modi_cation has also an advantage in describing the boundary conditions[ At a moving\
undrained boundary it is easier to prescribe that no ~uid comes out "wF � 9#\ than to prescribe
that the velocity of the ~uid is equal to the velocity of the skeleton "x?F � x?S#[ A disadvantage of
this modi_cation is to be seen when we want to substitute the acceleration of the ~uid by the time
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derivations of wF and x?S[ In this case we have to take the convective acceleration terms into account
and we get]

xýF � "wF¦x?S#?S¦ grad "wF¦x?S#wF
zxxcxxv

convective acceleration terms

[ "39#

These convective acceleration terms in the ~uid are in practice relatively insigni_cant in view of
the shortcomings with which the permeability kF is determined and analogous to Zienkiewicz and
Shiomi "0873# these terms are to be omitted from here onwards[

1[4[ Final equations

Summing up the assumptions of the previous sections and substituting the constitutive equation
in the _eld equations we get a _nal set of three equations[ At _rst\ we take the balance equation of
momentum for the solid phase\ insert the assumption "06# for the stress tensor and "06# and "27#
for the interaction force\ thus obtaining]

div "TS
E−nSpI#¦7Sb−7SxýS−p grad nF¦

gFR"nF#1

kF
wF � 9[ "30#

This equation describes the forces acting on the solid phase[ The stress tensor is split into an
e}ective part\ determined by the motion and the weighted pore pressure[ The terms describing its
own weight and acceleration are similar to the terms used in classical continuum mechanics of
monophasic media\ but this equation is extended by the interaction force[ In the same manner we
obtain an equation for the ~uid phase\ presented by]

div "−nFpI#¦7Fb−7F"w?F¦xýS#¦p grad nF−
gFR"nF#1

kF
wF � 9[ "31#

Up to here we have two vectorial equations for the unknown motions of the solid and the ~uid[
Another unknown is the pressure p[ Therefore\ we take the mass balance equations\ considering
the incompressibility and the saturation condition[ Doing this\ we obtain]

div "nFwF¦x?S# � 9\ "32#

which represents the volume balance equation of the whole mixture[ As a result of the incom!
pressibility\ we can see that if one part of the volume is changing\ for example div x?S\ the change
of the divergence of the other part is constrained[

In order to solve the system of equations in an e}ective way and to match the problem to the
boundary and initial conditions we have to appropriate the balance equations of momentum[
Firstly\ we combine the balance equations of momentum "00# of both the constituents

div "TS
E−pI#¦"7S¦7F#b−7SxýS−7F"w?F¦xýS# � 9\ "33#

thus\ getting an equation that describes the balance equation of momentum of the whole mixture[
The interaction terms vanish\ the total stress tensor is the addition of the partial stress tensors and
the external acceleration acts on both the constituents[
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The balance equation of momentum of the ~uid "31# and the volume balance eqn "32# close the
set of equations\ while substituting 7a by "4#[

The calculation of the mechanical behavior of a porous medium based on this theory is governed
by these three equations[ As unknowns the motion of solid\ the motion of ~uid and the pore
pressure appear[

2[ Numerical solution

The system of equations introduced in the previous section can be discretized by using the
standard _nite element procedures and weak forms of the appropriate equations[ Details of
such methods are well described by Zienkiewicz "0873# or Lewis and Schre~er "0876#[ A semi!
discretization procedure is used by approximating the unknown functions in the space domain[
The time integration will be done by the standard Newmark method\ by choosing the parameters
b � 9[14 and d � 9[4[

2[0[ Weak formulation

For numerical computations\ a standard Galerkin procedure is chosen[ Therefore\ each of the
basic equations "31#Ð"33# must be multiplied by a weighting function[ These weighting functions
have to satisfy the natural boundary conditions[ For eqn "33# a virtual solid displacement u¹S is
applied[ The volume integral of a divergence can be transformed into a surface integral "Gauss
theorem#\ see de Boer "0871#\ in order to prescribe static boundary conditions]

gB

ð"TS
E−pI# = grad u¹S¦7SxýS = u¹S¦7F"wF¦x?S#?S = u¹SŁ dv � gA

t = u¹S da¦gB

"7S¦7F#b = u¹S dv\ "34#

where t is the total stress vector at the surface of the mixture\ consisting of the stress at the solid
and the stress at the ~uid[

Equation "31# is weighted by a virtual seepage velocity w¹ F and the volume integral was trans!
formed into a surface integral

gB 6"−p div w¹ F#¦
gFRnF

kF
wF = w¹ F¦7FR"wF¦x?S#?S = w¹ F7 dv

� −gA

pw¹ F = n da¦gB

7FRb = w¹ F dv[ "35#

Equation "32# closes the set of equations[ It represents the volume balance equation of the whole
mixture and was multiplied by a virtual pressure p¹]

gB

div "nFwF¦x?S#p¹ dv � 9[ "36#

Equation "36# causes numerical problems in this form[ In two!dimensional problems with asymetric
boundary conditions the pore pressure oscillates with large amplitudes with increasing depth[ In
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order to avoid this problem we follow a strategy suggested by Diebels and Ehlers "0884#[ Therefore\
we take the balance equation of momentum of the ~uid "31# and solve this equation explicitly for
wF[ Next we replace wF in eqn "36# by this expression and after some transformations and changes
we obtain]

gB

div $−
kF7FR

gFR
"w?F¦xýS#¦x?S% p¹ dv−gB

kF7FR

gFR $b−
0

7FR
grad p% = grad p¹ dv

� −gA $
kF7FR

gFR
"w?F¦xýS#¦nFwF% = np¹ da[ "37#

With this combination of eqns "31# and "32# the numerical problems vanish and the oscillation of
the pore pressure fades away[

3[ Examples for elastic material behavior

3[0[ Veri_cation of the chosen solution al`orithm

Taking linear elasticity theory into account\ de Boer et al[ "0882# presented an analytical solution
for a one!dimensional consolidation problem using the Laplace transformation[

Thus\ there is an excellent example for the comparison of the analytical and the numerical
solution[ This test was introduced by Ehlers and Diebels "0883# in order to verify their chosen
solution strategy[ In this investigation the test has been repeated for the veri_cation of the applied
solution strategy\ which di}ers in element shape\ time integration and chosen shape functions from
the above mentioned approach[

In order to model the half space via the _nite element method\ a column of 09 m depth and 1
m1 surface was taken into account[ The solution was only calculated for a very short time\ so that
no signal of the rigid boundary at a depth of 09 m could in~uence the solution[

The upper boundary of the column is perfectly drained and loaded once by a sine load "q#]

q0"t# � 2"0−sin "vt##ðkN:m1Ł\ v � 64 s−0\ "38#

and in another case by a step load "q#]

q1"t# � 2ðkN:m1Ł[ "49#

The other boundaries are undrained and rigid\ see Fig[ 1[ The material parameters are taken
from de Boer et al[ "0882# as]

mS � 4472 kN:m1\ lS � 7264 kN:m1\

7SR � 199 kg:m2\ 7FR � 0999 kg:m2\

nS
9S � 9[56\ kF � 9[90 m:s[

Figure 2 shows the surface displacement under both loads[ It shows a good agreement between
the analytical and the numerical solution[ In the case of the step load the displacementÐtime
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Fig[ 1[ Geometry of the one!dimensional consolidation problem[

Fig[ 2[ Comparison between an analytical and a numerical solution[

behavior starts with a big time gradient\ which decreases with increasing time\ see Fig[ 2[ This is
the typical behavior of an overdamped vibration!system\ which has in fact the same structure after
the discretization[

Considering the sine load the displacementÐtime behavior starts with a smoother time gradient
and we obtain an exact agreement with the analytical solution[

3[1[ Consolidation problem

As a next example the two!dimensional consolidation problem is going to be calculated[ This
class of problem occurs in soil mechanics\ when foundations of buildings are the point of interest\
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Fig[ 3[ Consolidation problem[

see Fig[ 3a[ Many computations are done in this _eld\ for example Pre�vost "0870#\ Zienkiewicz
and Shiomi "0873#\ Lewis and Schre~er "0876# or Ehlers and Diebels "0884#[ If we take the simplest
case into account\ the boundary conditions are symmetric and we have only to model one half of
the problem "Fig[ 3b#[ Therefore\ an area of 09×09 m is taken into account[ The material
parameters are the same as in the previous section\ except the Darcy!parameter[ This parameter is
changed to kF � 09−8 m:s in order to force a stronger coupling between the constituents[

In order to create an FE!model for the above mentioned problem\ we discretize the plane of
09×09 m by 250 four!node rectangular elements and prevent the vertical solid displacements and
the ~uid motion at the bottom\ as well as the horizontal solid displacements and ~uid motion on
both sides[ At the top the left side is unloaded and drained\ whereas the right side is undrained
and loaded by a force\ which simulates the weight of a building[

The consolidation process takes _ve years until the settlement reaches its _nal value\ while the
pore pressure decreases to zero[ Figure 4 shows the pore pressure at di}erent time steps[

In Fig[ 4 we can see that in the beginning "t � 0 day# the whole external load "04 kN:m1# is
carried by the water and the pore pressure under the external load is as high as 03 kN:m1[ With
the passage of time\ the pore pressure decreases and after three years it is nearly zero[

Figure 5 shows the evolution of the solid displacement as a function of time[ In the beginning
only a small amount of drainage occurs[ The ground on the right side moves down and as a result
of the incompressibility\ the ground on the left side moves up in the same way[ With the passage
of time the right side is still moving down whereas the left side stops moving up and starts with its
settlement[ During this time the water squeezes out of the porous body and after _ve years the
process is _nished\ the settlement reaches its _nal value and the pore pressure is zero[

Figure 6 shows a vector plot of the seepage velocity at t � 0 day[ The directions of the seepage
velocity do not vary[ The values of the velocity starts with large quantities and tend to zero after
_ve years[

3[2[ Wave propa`ation

In this section the wave propagation in a porous media is taken into account[ According to
Biot|s theory\ see Biot "0845# with two compressible constituents there are two longitudinal waves
in a porous medium[ One wave of dilatation is transmitted through the compressibility of the ~uid
and solid\ the other is transmitted through the elastic structure[

These two waves are coupled through the sti}ness of the soil and ~uid components of the system
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Fig[ 4[ Evolution of the pore pressure ðkN:m1Ł as a function of time[
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Fig[ 5[ Evolution of the solid displacement ðmŁ as a function of time[

Fig[ 6[ Vector plot of the ~uid motion at t � 0 day[
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as well as through the coupling e}ect produced by motions of the solid and ~uid\ see Richart et
al[ "0869#[

In this investigation both constituents are incompressible\ thus the speed of the fast longitudinal
wave is in_nite[ The wave motion which we can observe is the motion transmitted through the
elastic structure of the solid skeleton[

The wave propagation in a one!dimensional porous body has been the topic of a former
investigation\ see Breuer "0886#[ In this paper the propagation of longitudinal and transverse waves
in a two!dimensional body are the point of interest[ Therefore\ we take the same structure as in
the previous section\ but modeled with a hole in the middle of the plane[ A sinusodal impulse
pressure]

p"t# � 6
099 sin "67[43 = t#ðkNŁ if t ¾ 9[93 s

9 if t − 9[93 s
\ "40#

is applied at the surface of the hole in the center of the structure[ The top is drained and unloaded[
Figure 7 shows the amount of the solid displacements u\

u � zu1
0¦u1

2\ "41#

at di}erent time steps[ The disturbance propagates in all directions with the same velocity[ As
expected\ this causes a circle!form of the spread of the disturbance[ Since the top is not a rigid
boundary\ the structure is smoother in this area and the displacements are larger[ With passing
time "t � 9[93 s# a re~ection of the disturbance at the rigid and free boundary can be observed[
The velocity of the longitudinal wave is exactly the same as calculated in the one!dimensional
problems[

4[ Examples for plastic material behavior

In the following section the compaction of a T!shaped die under plane strain is taken into
account to show an example for the plastic material behavior[ Since the investigations taken under
consideration are slow processes\ the inertia forces are neglected[ A quasi!static solution has been
computed[ According to an example given in the literature by Morimoto et al[ "0871#\ the die
consists of a metal powder[ This powder is modelled by the theory of porous media "TPM# as a
powder skeleton with gas _lled pores[ The elastic material parameters of the powder are taken
from the above mentioned literature as

ES � 01\999 kN:m1\ nS � 9[97[

The plastic material parameter for the Green yield function\ see Section 1\ are determined as

a � 9[1\ k � 9[5[

The properties of the gas are assumed to be negligible[ The wall friction is assumed to depend on
the normal stress at the wall and is calculated by using Coulomb|s friction law[ The results based
on the theory of porous media are compared to the numerical and experimental results given in
Morimoto et al[ "0871#[
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Fig[ 7[ Solid displacements ðmŁ[

Two di}erent transformation processes are considered\ _rst the displacements of the upper
punch are prescribed and in a second case the punch movement of the bottom is prescribed[ For
the basic die design see Morimoto et al[ "0871#[ Figures 8 and 09 show the relative density of the
powder at the end of the process[ The relative density

7rel �
7S

7SR
� nS "42#
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Fig[ 8[ Relative density "volume fraction of the solid# of the _rst case[ "a# Experimental results of Morimoto et al[ "0871#[
"b# Numerical results of Morimoto et al[ "0871#[ "c# Numerical results based on the TPM[

is de_ned as the ratio of the apparent density to the maximum theoretical density[ In the theory
of porous media this quantity means the volume fraction of the solid[

The structure is modelled by 379 rectangular four!node elements and as the solution strategy
the NewtonÐRaphson interaction\ see Bathe "0889# was chosen[

4[0[ Die compaction*movement of the lower punch

In the _rst case the lower punch moves up with a velocity of 9[4 mm:min until it reaches its _nal
displacement of 7 mm[ The punch at the top is _xed[ The initial density is 9[221[ The friction factor
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Fig[ 09[ Relative density "volume fraction of the solid# of the _rst case[ "a# Experimental results of Morimoto et al[
"0871#[ "b# Numerical results of Morimoto et al[ "0871#[ "c# Numerical results based on the TPM[

is not explicitly given in the above mentioned article\ only a remark\ that the friction is small\
caused by a die wall lubricant[ Caused by this fact\ the authors chose a friction factor of 9[91[

Figure 8 shows the relative density after 05 min\ when the lower punch reaches its _nal dis!
placement of 7 mm[ The relative density at the lower part of the die increases much more than at
the upper part[ That is expected and analogous to the second investigation\ see Fig[ 09[ Herein the
upper punch moves down and the relative density at the upper part of the die increases more than
the lower part[

The agreement between the numerical simulation based on the TPM and the experimental data
is quite good[ Only a small di}erence occurs at the lower right side[ These areas of smaller relative
density could have been caused by the friction factor assumed by the authors[
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4[1[ Die compaction*movement of the upper punch

In this investigation the bottom punch is _xed and the upper punch moves down with the same
velocity as in Case 0[ Coulomb|s friction factor is 9[1 and the initial relative density is 9[221\ as
given in the above mentioned article[

Figure 8 exhibits the relative density of the metal powder after 05 min\ when the upper punch
reaches its _nal displacements of 7 mm[ The numerical simulation of the die compaction based on
the theory of porous media hits the experimental data much better than the numerical simulation
of Morimoto et al[ "0871#[ The compaction of the powder at the upper right side is totally left out
in Morimoto et al[|s simulation\ whereas the TPM approach represents this e}ect exactly[ Also\
the lower parts _ts better to the experimental results[

The examples in Section 4 prove that the TPM is a powerful tool for the simulation of compaction
of metal powders[ In both the cases the numerical calculation with the TPM _ts the experimental
results[

5[ Concluding remarks

In this investigation the elastic and the elastic!ideal!plastic material behavior of a ~uid saturated
porous medium has been taken into account[ The governing equations are formulated by a model
with two microscopic incompressible phases[ Based on this model the classical one! and two!
dimensional consolidation process\ as well as the wave propagation in a two!dimensional plane
has been calculated[ The plastic material behavior is related to a compaction process of metal
powder[

In the one!dimensional example the numerical results of the consolidation problem were com!
pared with an existing analytical solution\ based on the same theory[ Only small di}erences occur
between the numerical and analytical solutions[ The presented two!dimensional example of a
dynamic consolidation problem shows the expected behavior of the pore pressure distribution\ the
seepage velocity and the solid displacement[ In the example of the two!dimensional wave propa!
gation the well!known longitudinal wave as well as the shear wave can be observed[

The numerical simulations of the compaction processes are compared with experimental and
numerical results and show a better agreement to the experimental data than the numerical
approach done by Morimoto et al[ "0871#[

The presented theory is a convenient alternative to the well!known Biot|s theory\ as it presents
a completely consistent procedure based on the fundamental balance equations of mechanics[ For
this reason\ a further development\ e[g[\ physical and geometrical non!linearities\ as well as plastic
material behavior can be implemented in a consistent way[
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